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Decentralized event-triggered H∞ control for

neural networks subject to cyber-attacks

Lijuan Zha Engang Tian Xiangpeng Xie Zhou Gu Jie Cao ∗

April 9, 2018

Abstract

This paper addresses the problem of decentralized event-triggered H∞ control for neural

networks subject to limited network-bandwidth and cyber-attacks. In order to alleviate the

network transmission burden, a decentralized event-triggered scheme is employed to determine

whether the sensor measurements should be sent out or not. Each sensor can decide the trans-

mitted sensor measurements locally according to the corresponding event-triggered condition.

It is assumed that the network transmissions may be modified by the occurrence of the ran-

dom cyber-attacks. A Bernoulli distributed variable is employed to reflect the success ration of

the launched cyber-attacks. The Lyapunov method is employed to derive a sufficient condition

such that the closed-loop system is asymptotically stable and achieves the prescribed H∞ level.

Moreover, the desired H∞ controller gains are derived provided that the sufficient condition

is satisfied. Finally, illustrative examples are utilized to show the usefulness of the obtained

results.

Keywords: Decentralized event-triggered scheme; cyber-attacks; limited network-bandwidth;

networked control systems

1 Introduction

Due to the successful applications in signal processing, combinatorial pattern recognition and so

on, neural networks have been an hot topic and received much attention in the last few decades

[29, 34, 36]. An important issue on an unstable neural network is to design a suitable controller
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to stabilize it. Up to date, a number of notable results on this issue are available in the literature.

To mention a few, network-based H∞ quantized control is considered in [14] for a class of neural

networks; The finite stabilization problem for delayed neural networks is investigated in [30]; and

the guaranteed cost control is concerned with [31] for Markov jump neural networks with distributed

delay, fading channel and event-triggered scheme.

In many network-based industrial systems, transmission resources such as communication network-

bandwidth and sensor energy are limited [15, 20, 23, 32, 35, 37]. It is significant to execute only

necessary transmission tasks so that limited communication resources can be reasonably used. Re-

cently, increasing attention has been paid to designing proper transmission strategies in order to save

the precious network resources [7, 8, 11, 19, 28, 38]. There are a number of methods available in

the literature[9, 10, 17, 39, 40]. A useful one is called a time-triggered mechanism, under which the

signal transmission is executed in a periodic way. This mechanism definitely produces unnecessary

or redundant signals to be transmitted, leading to a congested network traffic. As a result, system

performance is degraded. To overcome the drawback of the time-triggered mechanism, several event-

triggered schemes are proposed to stop those unnecessary signals transmitted, and thus the quality

of service of a communication network is improved. For example, in [33], an event-triggered scheme

is proposed, which is dependent on the sampled-data error between the current sampled state and

the latest transmitted one. In [41], an event-triggered communication scheme is introduced to design

output tracking controllers for networked T-S fuzzy system. Asynchronous event-triggered control is

considered in [12] for decentralized networked systems.

The security problems in networked control systems have attracted much attention in the control

community [6, 16, 22], due to the fact that large amount of data need to be transferred through

networked communication channel which is exposed to cyber-attacks. The cyber-attacks aim to

exploit the vulnerabilities in communication links and send incorrect control actions to the operators

in control centers. Recently, some efficient methods have been proposed to defend against cyber-

attacks and make perfect attacks impossible. For instance, in [2], the deception attacks are considered

in dealing with consensus via an event-triggered control scheme; The coordinated cyber-attacks in

hybrid state estimation are discussed in [1]; In [24], a resilient event-triggered communication scheme

is introduced for a muti-area power system with bandwidth-limited communication channel; and H∞

filter design for neural networks with a hybrid triggered scheme and deception attacks is investigated

in [18]. However, for the stabilization problem of a neural network, few results have been reported

to investigate the cyber-attacks when a decentralized event-triggered scheme is employed. This

motivates the current study.

Based on the above discussions, this paper aims to investigate the problem of event-triggered

H∞ control for neural networks subject to cyber-attacks. The main contributions of this paper

include: (1) A closed-loop system model is proposed by considering the limited network resources

and randomly occurring cyber-attacks; (2) A decentralized event-triggered-scheme is employed to

reduce the utilization of the network resources. With this scheme, all transmitted nodes needn’t

to be synchronous and each sensor can determine its transmitted signals locally; (3) The randomly

occurring cyber-attacks, governed by a Bernoulli distributed variable, are modeled as a nonlinear

function satisfying a restraining condition. (4) A new effective control method is presented to stabilize

2



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the studied system.

Notation: Rn and Rn×m denote the n-dimensional Euclidean space and the set of n × m real

matrices; Prob{X} stands for the occurrence probability of event X; E denotes the expectation

operator; the superscript T stands for matrix transposition; the notation X > 0, for X ∈ Rn×n

means that the matrix X is real symmetric positive definite; I is the identity matrix of appropriate

dimension; for a matrix B and two symmetric matrices A and C,

[
A ∗
B C

]
denotes a symmetric

matrix, where ∗ denotes the entries implied by symmetry.

2 Preliminaries

Cyber attacks 

( )tw
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Figure 1: The structure of decentralized event-triggered neural networks with cyber-attacks

In this paper, the neural network model addressed is described as follows:
{
ẋ(t) = Ax(t) +Bu(t) + Eg(x(t− η(t))) +Dω(t)

z(t) = Cx(t)
(1)

where x(t) = [x1(t) x2(t) · · · xn(t)]T is the state variable with n neurons; u(t) ∈ Rm is the control

input; and z(t) is the controlled output variable; g(x(t)) = [g1(x1(t)) g2(x2(t)) · · · gn(xn(t))]T denotes

the neuron activation function; η(t) represents the time-varying delay satisfying 0 ≤ η(t) ≤ ηM ,

where ηM is a constant; A = diag{a1, a2, . . . , an} is a diagonal matrix; B, E, D and C are known

real matrices with appropriate dimensions.

Throughout this paper, the neuron active function g(x) is assumed to satisfy the following as-

sumption:

Assumption 1 For i ∈ {1, 2, . . . , n}, the activation function gi(x) satisfies gi(0) = 0 and ∀s1 6= s2

φ−gi ≤
gi(s1)− gi(s2)

s1 − s2

≤ φ+
gi (2)

where φ−gi and φ+
gi are known constants.
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Assumption 2 The communication network delay at sampled instant tik in the ith sensor is denoted

by τtik . It is assumed that 0 < τtik < τ̄ i, τ̄ = maxi∈{1,2,...,n}{τ̄ i}.

The diagram of the controlled neural network is shown in Fig. 1. The sensors and the cor-

responding controllers exchange information via a communication network subject to time-delay

and cyber-attacks. Particularly, with consideration of the limited network-bandwidth, the event-

generators are employed at each sensor side to reduce the unnecessary network transmissions. The

newly sampled signals are carried to the corresponding event generators directly. Only the sampled

signals, which violate the event-triggered condition, can gain access to the network transmission. It

is assumed that the cyber-attacks occur randomly which aim to make the communication signals

dishonest.

The objective of this paper is to stabilize the neuron sates based on the neural network (1).

Considering the limited network resources and the randomly occurring cyber-attacks, the closed-

loop system model will be established step by step in the following.

In order to avoid redundant network transmissions, a decentralized event-triggered scheme is

introduced to determine whether local sampled measurements in each sensor should be sent out to

the communication network or not. The event-triggered condition in the ith sensor is predefined as

follows:

eTi (t)Ωiei(t) < σix
T
i (tikh+ jih)Ωixi(t

i
kh+ jih) (3)

where σi ∈ [0, 1), Ωi > 0 is a weighting matrix, i ∈ {1, 2, . . . , n}, h is the sampling interval, jih is the

sampling instant in the ith sensor, ei(t) = xi(t
i
kh)−xi(tikh+ jih), xi(t

i
kh) and xi(t

i
kh+ jih) represent

the latest transmitted signal and current sampled signal, respectively.

Remark 1 In the ith event generator, the latest released instant is tikh, the current sampled instant

is tikh+ jih. It should be noted that {ti1, ti2, . . . , } ⊆ {h, 2h, . . . , jih, . . .}, i ∈ {1, 2, . . . , n}.

The holding interval [tikh, t
i
k+1h) of ZOH can be partitioned into several subsets

⋃jiM
ji=0

Υji , Υji =

[tikh+ jih+ τtik+ji , t
i
kh+ jih+ h+ τtik+ji+1), ji = 0, 1, . . . , jiM , j

i
M = tik+1 − tik − 1.

Similar to [26], at the actuator side, we set a series of buffers which aim to store the controller

outputs with time-stamps. The actuators can update the controlled inputs by selecting the controller

outputs with the same time-stamp from the buffers. Thus, the set of update time tkh for the input

of the actuators is as follows: tk+1h = tkh + jh, jh = argmini∈{1,2,...,n}{jih} which can be obtained

from (3).

Define τ(t) = t − tkh − jh, it is easy to know that 0 ≤ τtk ≤ τ(t) ≤ τM , τM = h + τtk+j+1, based

on (3), the following inequalities can be derived for n channels:

eT (t)Ωe(t) < σxT (t− τ(t))Ωx(t− τ(t)) (4)

where e(t) = x(tkh)− x(tk+1h+ jh), σ = diag{σ1, σ2, . . . , σn}, Ω = diag{Ω1,Ω2, . . . ,Ωn},
In this paper, we assume the data is transmitted via a vulnerable communication network, which

can be an objective of a hacker to alter the transmitted information. Considering the limited access to
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the network resources for a hacker, the controller input can be destroyed or modified by the malicious

cyber-attacks randomly. A new model of controller design method reflecting the decentralized event-

triggered scheme and cyber-attacks is proposed as follows:

u(t) = α(tk)Kx(tkh) + (1− α(tk))Kf(x(t− d(t))), (5)

where α(tk) ∈ {0, 1} with the following statistical properties: Prob{α(tk) = 1} = ᾱ, Prob{α(tk) =

0} = 1−ᾱ, K is the controller gain to be designed later, f(x(t−d(t))) is the function of cyber-attacks,

f(x(t)) =
[
f1(x1(t)) f2(x2(t)), . . . , fn(xn(t))

]T
, d(t) ∈ (0, dM ], dM is a positive constant.

Remark 2 Notice that the communication link between event generators and controllers is vulnerable

to cyber-attacks. The real triggered measurements may be attacked by the randomly occurring cyber-

attacks when transmitted through the communication network. Thus, the operator in the control

center maybe send out wrong control actions.

Combing (1) and (5), we obtain

ẋ(t) = Ax(t) + α(tk)BKx(tkh) + (1− α(tk))BKf(x(t− d(t))) + Eg(x(t− η(t))) +Dω(t), (6)

t ∈ [tkh+ τtk , tk+1h+ τtk+1
)

Recalling the definition of τ(t) and the characteristics of α(tk), (6) can be written as follows:

ẋ(t) = Ax(t) + ᾱBK[x(t− τ(t)) + e(t)] + (1− ᾱ)BKf(x(t− d(t))) + Eg(x(t− η(t)))

+Dω(t) + (α(tk)− ᾱ)BK[x(t− τ(t)) + e(t)− f(x(t− d(t)))], (7)

t ∈ [tkh+ τtk , tk+1h+ τtk+1
)

Remark 3 In this paper, the success of the launched cyber-attack is assumed to obey Bernoulli

distribution. α(tk) = 1 means the real sensor measurements are received by the controllers, α(tk) = 0

means the sensor measurements which have access to the communication network are attacked.

The following assumption and lemmas are presented which is useful in deriving our main results.

Assumption 3 The cyber-attack function fi(x) satisfies fi(0) = 0 and ∀i ∈ {1, 2, . . . , n}, s1 6= s2

φ−fi ≤
fi(s1)− fi(s2)

s1 − s2

≤ φ+
fi (8)

where φ−fi and φ+
fi are known constants.

Lemma 1 [25] Assume τ(t) ∈ [0, τ̄ ], for any matrices X ∈ Rn×n and U ∈ Rn×n that satisfy[
X U

UT X

]
≥ 0, the following inequality holds:

−τ̄
∫ t

t−τ̄
ẋT (s)Xẋ(s) ≤




x(t)

x(t− τ(t))

x(t− τ̄)




T 

−X ∗ ∗

XT − UT −2X + U + UT ∗
UT XT − UT −X







x(t)

x(t− τ(t))

x(t− τ̄)


 (9)
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Lemma 2 [14] For a full column rank matrix M ∈ Rn×m, the singular decomposition is M = UΣV T ,

in which U and V are orthogonal matrices, Σ ∈ Rm×n is a rectangular diagonal matrix with positive

real numbers. Let S is matrix of the form S = Udiag{R1, R2}UT , then, there exists X ∈ Rm×m such

that SM = MX.

Lemma 3 [21] For x(t) and g(x(t)) in Assumption 1, and x(t) and f(x(t)) in Assumption 3, one

has the following inequalities for positive semi-definite diagonal matrices U and V
[
x(t)

g(x(t))

]T [
−UΦ−g UΦ+

g

Φ+
g U −U

][
x(t)

g(x(t))

]
≥ 0 (10)

[
x(t)

f(x(t))

]T [
−V Φ−f V Φ+

f

Φ+
f V −V

][
x(t)

f(x(t))

]
≥ 0 (11)

where

Φ−g = diag{φ−g1φ+
g1, φ

−
g2φ

+
g2, · · · , φ−gnφ+

gn},Φ+
g = diag{φ

−
g1 + φ+

g1

2
,
φ−g2 + φ+

g2

2
, · · · , φ

−
gn + φ+

gn

2
}

Φ−h = diag{φ−h1φ
+
h1, φ

−
h2φ

+
h2, · · · , φ−hnφ+

hn},Φ+
h = diag{φ

−
h1 + φ+

h1

2
,
φ−h2 + φ+

h2

2
, · · · , φ

−
hn + φ+

hn

2
}

3 Main Results

The following Theorem 1 presents a sufficient condition to ensure the asymptotical stability of the

closed-loop system (7).

Theorem 1 Let the following parameters ηM , τM , dM , ᾱ, γ, εr, r = 1, 2, 3, σ and matrix K be given,

the closed-loop system (7) is asymptotically stable if there exist positive matrices P , Q1, Q2, Q3, R1,

R2, R3, and diagonal matrices Ω, U and V such that



Π11 ∗ ∗
Π21 R ∗
Π31 0 R


 < 0 (12)

[
Rl ∗
Ml Rl

]
> 0, l = 1, 2, 3 (13)

where

Π11 =




Σ11 ∗ ∗
Σ21 Σ22 ∗
Σ31 Σ32 Σ33


 ,Σ11 =




Γ1 ∗ ∗
R1 −M1 −2R1 +M1 +MT

1 − UΦ−g ∗
M1 R1 −M1 −Q1 −R1


 ,

Γ1 = PA+ ATP +Q1 +Q2 +Q3 −R1 −R2 −R3 + CTC,

Σ21 =




ᾱKTBTP +R2 −M2 0 0

M2 0 0

R3 −M3 0 0

M3 0 0


 ,Σ22 =




Γ2 ∗ ∗ ∗
R2 −M2 −Q2 −R2 ∗ ∗

0 0 Γ3 ∗
0 0 R3 −M3 −Q3 −R3


 ,
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Γ2 = −2R2 +M2 +MT
2 + σΩ,Γ3 = −2R3 +M3 +MT

3 − V Φ−f

Σ31 =




ETP Φ+
g U 0

(1− ᾱ)KTBTP 0 0

αKTBTP 0 0

DTP 0 0


 ,Σ32 =




0 0 0 0

0 0 Φ+
f V 0

0 0 0 0

0 0 0 0




Σ33 = diag{−U,−V,−Ω, γ2I},Π21 =
[
ηMΓT4 τMΓT4 dMΓT4

]T
,

Π31 =
[
ηMΓT5 τMΓT5 dMΓT5

]T
,Γ4 =

[
Γ41 Γ42

]

Γ5 =
[
01×3 δPBK 01×4 −δPBK δPBK 0

]
, δ =

√
ᾱ(1− ᾱ)

Γ41 =
[
PA 0 0 ᾱPBK 0 0 0

]
,Γ42 =

[
PE (1− ᾱ)PBK ᾱPBK PD

]

R = diag{−PR−1
1 P,−PR−1

2 P,−PR−1
3 P}

Proof: Choose the following Lyapunov-Krasovskii functional for the closed-loop system (7):

V (x(t)) = xT (t)Px(t) +

∫ t

t−ηM
xT (s)Q1x(s)ds+

∫ t

t−τM
xT (s)Q2x(s)ds+

∫ t

t−dM
xT (s)Q3x(s)ds

+ηM

∫ t

t−ηM

∫ t

s

ẋT (v)Q1ẋ(v)dvds+ τM

∫ t

t−τM

∫ t

s

ẋT (v)Q2ẋ(v)dvs

+dM

∫ t

t−dM

∫ t

s

ẋT (v)Q3ẋ(v)dvds (14)

Taking mathematical expectation of the derivative of V (x(t)), we have

E{V̇ (x(t))} = 2xT (t)Pẋ(t) + xT (t)(Q1 +Q2 +Q3)x(t)− xT (t− ηM)Q1x(t− ηM)

−xT (t− τM)Q2x(t− τM)− xT (t− dM)Q3x(t− dM) + E{ẋT (t)Rẋ(t)}

−ηM
∫ t

t−ηM
ẋT (s)Q1ẋ(s)ds− τM

∫ t

t−τM
ẋT (s)Q2ẋ(s)ds

−dM
∫ t

t−dM
ẋT (s)Q3ẋ(s)ds (15)

where R = η2
MR1 + τ 2

MR2 + d2
MR3.

By Lemma 1, the following inequalities hold if there exist Ml(l = 1, 2, 3) satisfying (13):

−ηM
∫ t

t−ηM
ẋT (s)Q1ẋ(s)ds ≤ ξT1 (t)Ψ1ξ1(t) (16)

−τM
∫ t

t−τM
ẋT (s)Q2ẋ(s)ds ≤ ξT2 (t)Ψ2ξ2(t) (17)

−dM
∫ t

t−dM
ẋT (s)Q3ẋ(s)ds ≤ ξT3 (t)Ψ3ξ3(t) (18)

where

ξT1 (t) =
[
xT (t) xT (t− η(t)) x(t− ηM)

]

7
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ξ2(t) =
[
xT (t) xT (t− τ(t)) x(t− τM)

]

ξ3(t) =
[
xT (t) xT (t− d(t)) x(t− dM)

]

Ψl =



−Rl ∗ ∗

Rl −Ml −2Rl +Ml +MT
l ∗

Ml Rl −Ml −Rl


 , l = 1, 2, 3

Noting that

E{ẋT (t)Rẋ(t)} = ATRA+ ᾱ(1− ᾱ)BTRB (19)

in which A = Ax(t)+ᾱBK[x(t−τ(t))+e(t)]+(1−ᾱ)BKf(x(t−d(t)))+Eg(x(t−η(t)))+Dω(t),B =

BK[x(t− τ(t)) + e(t)− f(x(t− d(t)))]

From Lemma 3, it is not difficult to know that there exist U and V such that

[
x(t− η(t))

g(x(t− η(t)))

]T [
−UΦ−g UΦ+

g

Φ+
g U −U

][
x(t− η(t))

g(x(t− η(t)))

]
≥ 0 (20)

[
x(t− d(t))

f(x(t− d(t)))

]T [
−V Φ−f V Φ+

f

Φ+
f V −V

][
x(t− d(t))

f(x(t− d(t)))

]
≥ 0 (21)

Combining (15)-(21) and (4), then it implies that

E{V̇ (x(t))} ≤ 2xT (t)Pẋ(t) + xT (t)(Q1 +Q2 +Q3)x(t)− xT (t− ηM)Q1x(t− ηM)

−xT (t− τM))Q2x(t− τM)− xT (t− dM)Q3x(t− dM) + ξT1 (t)Ψ1ξ1(t)

+ξT2 (t)Ψ2ξ2(t) + ξT3 (t)Ψ3ξ3(t) +ATRA+ ᾱ(1− ᾱ)BTRB

+

[
x(t− η(t))

g(x(t− η(t)))

]T [
−UΦ−g UΦ+

g

Φ+
g U −U

][
x(t− η(t))

g(x(t− η(t)))

]

+

[
x(t− d(t))

f(x(t− d(t)))

]T [
−V Φ−f V Φ+

f

Φ+
f V −V

][
x(t− d(t))

f(x(t− d(t)))

]

−eT (t)Ωe(t) + σxT (t− τ(t))Ωx(t− τ(t))

= ξT (t)Π11ξ(t) +ATRA+ ᾱ(1− ᾱ)BTRB (22)

where

ξT (t) =
[
ξT1 (t) xT (t− τ(t)) xT (t− τM) xT (t− d(t)) xT (t− dM) ξ4(t)

]
,

ξ4(t) =
[
gT (x(t− η(t))) fT (x(t− d(t))) eT (t) ωT (t)

]

By the Schur complement, we can derive that (12) is equivalent to E{V̇ (x(t))} < γ2ωT (t)ω(t) −
zT (t)z(t). This completes the proof. �

Based on Theorem 1, we are now ready to present the controller design approach for the closed-

loop system (7).
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Assumption 4 In order to tackle with the nonlinear terms in Theorem 1, similar to [14], B is

assumed to be full column rank, the singular decomposition for B can be denoted by B = M

[
B0

0

]
N .

Theorem 2 Let the following parameters ηM , τM , dM , ᾱ, γ, εr, r = 1, 2, 3 and σ be given, the

closed-loop system (7) is asymptotically stable if there exist positive matrices P , Q1, Q2, Q3, R1, R2,

R3, and diagonal matrices Ω, U , V and a matrix Y such that




Π̄11 ∗ ∗
Π̄21 R̄ ∗
Π̄31 0 R̄


 < 0 (23)

[
Rl ∗
Ml Rl

]
> 0, l = 1, 2, 3 (24)

where

Π̄11 =




Σ11 ∗ ∗
Σ̄21 Σ22 ∗
Σ̄31 Σ32 Σ33


 , Σ̄21 =




ᾱY TBT +R2 −M2 0 0

M2 0 0

R3 −M3 0 0

M3 0 0


 ,

Σ̄31 =




ETP Φ+
g U 0

(1− ᾱ)Y TBT 0 0

αY TBT 0 0

DTP 0 0


 , Π̄21 =

[
ηM Γ̄T4 τM Γ̄T4 dM Γ̄T4

]T
,

Π̄31 =
[
ηM Γ̄T5 τM Γ̄T5 dM Γ̄T5

]T
, Γ̄4 =

[
Γ̄41 Γ̄42

]

Γ̄5 =
[
01×3 δBY 01×4 −δBY δBY 0

]

Γ̄41 =
[
PA 0 0 ᾱBY 0 0 0

]
, Γ̄42 =

[
PE (1− ᾱ)BY ᾱBY PD

]

R̄ = diag{−2ε1P + ε2
1R1,−2ε2P + ε2

2R2,−2ε3P + ε2
3R3}

where P = Mdiag{P1, P2}MT , P1 ∈ Rm×m, P2 ∈ R(n−m)×(n−m). Other symbols have been defined in

Theorem 1. The controller gain can be designed as

K = P−1
0 Y, P0 = (B0N)−1P1B0N (25)

in which B0 and N can be seen in Assumption 4 .

Proof: Since P = Mdiag{P1, P2}MT and the singular decomposition B = M

[
B0

0

]
N in Assumption

4, according to Lemma 2, there exists a new variable P0 satisfying PB = BP0, from

Mdiag{P1, P2}MTM

[
B0

0

]
N = M

[
B0

0

]
NP0 (26)
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we get

P0 = (B0N)−1P1B0N (27)

Substitute PBK with BP0K, and define Y = P0K, it follows from (12) that




Π̄11 ∗ ∗
Π̄21 R ∗
Π̄31 0 R


 < 0 (28)

In terms of the following inequality:

(Rk − ε−1
k P )R−1

k (Rk − ε−1
k P ) ≥ 0, (k = 1, 2, 3) (29)

One has that

−PR−1
k P ≤ −2εkP + ε2

kRk (30)

Replace −PR−1
k P with −2εkP + ε2

kRk in (28), (23) can be obtained. This completes the proof.

Remark 4 It should be pointed out that the event-triggered condition in this paper is obviously

different from the ones in [3–5, 13]. The event-triggered control schemes in [3–5, 13] make a decision

by the receiving information including the measurement of agent i and its neighbors. However, the

event-triggered condition in this paper only requires the local sensor own measurements.

Remark 5 It should be pointed out that the term PBK is nonlinear in Theorem 1 when designing

the controller for the discussed closed-loop system. To overcome the difficulty, motivated by the work

in [14], the structure of P is P = Mdiag{P1, P2}MT , the singular value decomposition of B is

denoted by B = M

[
B0

0

]
N . From Lemma 2, PB = BP0, P0 is a new variable. By this method,

P0K can be defined as a new matrix variable, then the controller design problem is turned into the

feasibility of inequalities (23) and (24). Moreover, the controller gain can be derived from (25).

Remark 6 Theorem 2 is derived based on a normal Lyapunov-Krasovskii functional (LKF) in (14)

and Jensen integral inequality. If we choose some proper augmented LKF [42, 43] and employ the

Bessel-Legendre inequality [27], it is expected to derive some less conservative results.

When the neural network is under the decentralized event-triggered scheme, and the network is

without cyber-attacks, the closed-loop system (7) reduces to the following forms:

ẋ(t) = Ax(t) +BK[x(t− τ(t)) + e(t)] + Eg(x(t− η(t))) +Dω(t), (31)

t ∈ [tkh+ τtk , tk+1h+ τtk+1
)

Similar to the proof in Theorem 2, we can obtain the following Corollary.
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Corollary 1 For given ηM , τM , γ, εr, r = 1, 2 and σ, the closed-loop system (31) is asymptotically

stable if there exist positive matrices P , Q1, Q2, R1, R2, and diagonal matrices Ω, U , and a matrix

Y such that



Π̂11 ∗ ∗
Π̂21 Π̂22 ∗
Π̂31 0 R̂


 < 0 (32)

[
Rl ∗
Ml Rl

]
> 0, l = 1, 2 (33)

where

Π̂11 =




Γ̂1 ∗ ∗ ∗
R1 −M1 −2R1 +M1 +MT

1 − UΦ−g ∗ ∗
M1 R1 −M1 −Q1 −R1 ∗

Y TBT +R2 −M2 0 0 Γ2


 ,

Γ̂1 = PA+ ATP +Q1 +Q2 −R1 −R2 + CTC,

Π̂21 =




M2 0 0 R2 −M2

ETP Φ+
g U 0 0

Y TBT 0 0 0

DTP 0 0 0


 ,

Π̂22 = diag{−Q2 −R2,−U,−Ω,−γ2I},

Π̂31 =

[
ηMPA 0 0 ηMBY

τMPA 0 0 τMBY

]T
, Π̂32 =

[
0 ηMPE ηMBY ηMPD

0 τMPE τMBY τMPD

]

R̂ = diag{−2ε1P + ε2
1R1,−2ε2P + ε2

2R2}

where P = Mdiag{P1, P2}MT , P1 ∈ Rm×m, P2 ∈ R(n−m)×(n−m), Γ2 has been defined in Theorem 1.

The controller gain can be designed as

K = P−1
0 Y, P0 = (B0N)−1P1B0N (34)

in which B0 and N can be seen in Assumption 4 .

4 Numerical examples

In this section, two simulation examples are provided to illustrate the effectiveness of the developed

approach in the previous section.

Example 1. The corresponding parameters of system (1) are given as follows:

A =



−0.5 0 0

0 0.1 0

0 0 −0.1


 , B =




0.1

0.2

0.1


 , E =




0.1 0.2 0

−0.1 0.2 0.1

−0.2 0 −0.3


 , C =




0.1 0 0

0 0.1 0

0 0 0.1
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D =




0.1

0.1

0.1


 , g(x) =




tanh(0.03x1(t))

tanh(0.06x2(t))

tanh(0.03x3(t))


 , ω(t) =





1, 5 ≤ t ≤ 10

0, else

−1, 15 ≤ t ≤ 20

The cyber-attack function is assumed to be

f(x) =




tanh(0.04x1(t))

tanh(0.04x2(t))

tanh(0.04x3(t))
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Figure 2: State response (Case 1))
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Figure 3: Release instants and intervals on

sensor node 1(Case 1)
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Figure 4: Release instants and intervals on

sensor node 2 (Case 1)
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Figure 5: Release instants and intervals on

sensor node 3 (Case 1)

It is easy to obtain that Φ−g = diag{0, 0, 0}, Φ+
g = diag{0.015, 0.03, 0.015}, Φ−f = diag{0, 0, 0},

Φ+
f = diag{0.02, 0.02, 0.02}.
In the following, we will consider two cases for neural network. In Case 1, the event-triggered

scheme and the cyber-attacks are both considered in neural network. In Case 2, the event-triggered

scheme is employed in neural network without cyber-attacks.
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Case 1: Suppose that ᾱ = 0.8, ηM = 0.5, dM = 0.5, τM = 0.5, γ = 1, σ = 0.1, h = 0.1,

ε1 = ε2 = ε3 = 1, by employing the MATLAB LMI Toolbox, from the LMI constraints (23)-(24) in

Theorem 2, we can obtain the following feasible solutions:

P =




13.4444 −2.1657 −2.3122

−2.1657 8.4437 −1.1200

−2.3122 −1.1200 11.3531


 , Y =

[
−4.5193 −20.8923 −3.6645

]
,

G =




9.9045 0 0

0 8.1964 0

0 0 1.8943


 , U =




18.1332 0 0

0 14.7018 0

0 0 8.9410


 ,

V =




12.3354 0 0

0 14.3981 0

0 0 13.3825




Applying (25) in Theorem 2, we derive the corresponding control gain

K =
[
−0.6645 −3.0720 −0.5388

]

The state trajectories of the controlled neural network is shown in Fig. 2, from which we can

see that the closed-loop system converges to zero asymptotically. Fig. 3-Fig. 5 present the release

instants and the corresponding release intervals on sensor node 1, sensor node 2 and sensor node 3,

respectively. The transmitted sensor measurements are 66, 51 and 49 on sensor node 1, sensor node

2 and sensor node 3, respectively, which means the average transmission rate is 11.07%.

Case 2: When the neural network is under event-triggered scheme but without cyber-attacks,

set ηM = 0.6, τM = 0.6, γ = 1, σ = 0.2, h = 0.1, ε1 = ε2 = 1. Based on the MATLAB LMI Toolbox,

from Corollary 1, we can get the controller gain and the triggering matrix as follows:

K =
[
−0.3708 −2.1362 −0.0501

]
, G =




5.9709 0 0

0 3.9676 0

0 0 0.2388


 ,

The state response is shown in Fig. 6. Fig. 7-Fig. 9 present release instants and intervals on sensor

node 1, 2, and 3, respectively, where the average transmission rate is 11.4% of the total 1500 sampled

measurements.

From the simulation results in the above two cases, it can be found that the stability of the

controlled system can be guaranteed under the designed control approach, and the decentralized

event-triggered scheme can reduce data transmission frequency compared with time-triggered scheme,

numerous unnecessary sampled measurements are discarded, which alleviates the transmission load

greatly.

Example 2. Consider system (1) with

A = diag{−1.2769,−0.6231,−0.9230,−0.4480}, B =
[
1 1 1 1

]T
,
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Figure 6: State response (Case 2)
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Figure 7: Release instants and intervals on

sensor node 1 (Case 2)
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Figure 8: Release instants and intervals on

sensor node 2 (Case 2)
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Figure 9: Release instants and intervals on

sensor node 3 (Case 2)

E =




0.8674 −1.2405 −0.5325 0.0220

0.0474 −0.9164 0.0360 0.9816

1.8495 2.6117 −0.3788 0.8428

−2.0413 0.5179 1.1734 −0.2775


 , C =




0.1 0 0 0

0 0.1 0 0

0 0 0.1 0

0 0 0 0.1


 , D =




0.1

0.1

0.1

0.1




g(x) =




tanh(0.03x1(t))

tanh(0.06x2(t))

tanh(0.03x3(t))

tanh(0.03x3(t))


 , ω(t) =





1, 5 ≤ t ≤ 10

0, else

−1, 15 ≤ t ≤ 20

The cyber-attack function is

f(x) =




tanh(0.04x1(t))

tanh(0.04x2(t))

tanh(0.04x3(t))

tanh(0.04x3(t))




14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Clearly, Φ−g = diag{0, 0, 0, 0}, Φ+
g = diag{0.015, 0.03, 0.015, 0.015}, Φ−f = diag{0, 0, 0, 0}, Φ+

f =

diag{0.02, 0.02, 0.02, 0.02}.
Choose ᾱ = 0.8, ηM = 0.4, dM = 0.4, τM = 0.3, γ = 1, σ = 0.1, h = 0.1, ε1 = ε2 = ε3 = 1.

Applying Theorem 2, the corresponding controller gain matrix and the trigger matrix are

K =
[
−0.0625 −0.5065 −0.2758 −0.3406

]
, G =




9.8267 0 0 0

0 22.6337 0 0

0 0 11.8197 0

0 0 0 7.4354




and the transmitted sensor measurements are 99, 105, 106 and 99, respectively. That is the average

transmission rate is 34.08% of the total 1200 sampled measurements. The release instants and the

corresponding release intervals of sensor nodes 1, 2, 3, 4 are shown in Fig. 11-14. Fig. 10 depicts the

response of the state. From the simulation results, it can be seen that the average release intervals

decrease and the derived control method and triggering matrix can stabilize the neural networks with

limited network-bandwidth and cyber-attacks.
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Figure 10: State response (Example 2)
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Figure 11: Release instants and intervals on

sensor node 1 (Example 2)

5 Conclusions

In this paper, the event-triggered H∞ control problem for neural network with limited network-

bandwidth and cyber-attacks is investigated. A decentralized event-triggered scheme is employed

to avoid unnecessary transmissions, which can reduce the controller updates. The randomly oc-

curring cyber-attacks aiming to reduce the network reliability is modeled as a nonlinear function.

Desired controllers have been designed to guarantee the closed-loop system asymptotically stable.

The usefulness of the obtained results has been illustrated by simulation results.
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Figure 12: Release instants and intervals on

sensor node 2 (Example 2)
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Figure 13: Release instants and intervals on

sensor node 3 (Example 2)

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time(s)

E
ve

nt
−

ba
se

d 
 r

el
ea

se
 in

st
an

ts
 a

nd
 r

el
ea

se
 in

te
rv

al

Figure 14: Release instants and intervals on

sensor node 4 (Example 2)
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